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a b s t r a c t

The spread of misinformation, propaganda, and flawed argumentation has been amplified in the
Internet era. Given the volume of data and the subtlety of identifying violations of argumentation
norms, supporting information analytics tasks, like content moderation, with trustworthy methods
that can identify logical fallacies is essential. In this paper, we formalize prior theoretical work on
logical fallacies into a comprehensive three-stage evaluation framework of detection, coarse-grained,
and fine-grained classification. We adapt existing evaluation datasets for each stage of the evaluation.
We employ three families of robust and explainable methods based on prototype reasoning, instance-
based reasoning, and knowledge injection. The methods combine language models with background
knowledge and explainable mechanisms. Moreover, we address data sparsity with strategies for data
augmentation and curriculum learning. Our three-stage framework natively consolidates prior datasets
and methods from existing tasks, like propaganda detection, serving as an overarching evaluation
testbed. We extensively evaluate these methods on our datasets, focusing on their robustness and
explainability. Our results provide insight into the strengths and weaknesses of the methods on
different components and fallacy classes, indicating that fallacy identification is a challenging task
that may require specialized forms of reasoning to capture various classes. We share our open-source
code and data on GitHub to support further work on logical fallacy identification.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The purpose of constructing an argument is to prove conclu-
ions that are in some way unknown or doubtful or that have
een challenged and called into question [1]. A logical fallacy is
logical mistake in the reasoning used to transition from one
roposition to the next, which results in a faulty argument [2].
ogical fallacies form a broad category of violations of argu-
entation norms, including structure, consistency, clarity, order,

elevance, and completeness. Detecting whether an argument is
allacious and the corresponding actual violation, is in practice
subtle task. Detecting one or more fallacies in an argument,
owever, does not prove its conclusion to be false — they merely
etect a flaw in the reasoning that attempted to prove that the
onclusion is true.
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Logical fallacies have been of interest to social science since
the early days of mathematics and philosophy [3]. More re-
cently, the societal relevance of logical fallacies has been greatly
amplified due to the wide adoption of the World Wide Web,
which enabled a free exchange of large amounts of information,
including an easy spread of misinformation [4–6] and propa-
ganda [7–9]. Misinformation and propaganda are thorny issues
for social media platforms on the Web and have been increasingly
addressed through the growing teams of moderators [10,11], and
are under the scrutiny of different organizations and governmen-
tal bodies, such as the UN [12]. Similarly, the EU plans to ratify
addressing misinformation as part of the Digital Services Act [13],
as the spread of harmful and incorrect arguments can sway the
population and lead to political shifts and civil unrests [14].

Considering the subtlety and the volume of fallacious argu-
ments, manually checking each by a human has become impos-
sible. Moreover, the very subjective nature of the tasks tends to
open room for disagreement on the classification when multiple
annotators or moderators are involved. This motivates the need
for automated methods that can quickly process an argument,

understand its intent, and detect possible flaws in the reasoning.
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he algorithms need to be robust, i.e., work well for an argu-
ent in an open domain, and explainable, i.e., provide an explicit

race of their reasoning for human collaborators like social media
oderators. Prior work on taxonomizing logical fallacies [1,3,15]
nd the initial efforts to develop logical fallacy benchmarks [16]
as set the ground for comprehensive and trustworthy logical
allacy methods. However, as these works have been attempted
n isolation, comprehensive methods and tasks are lacking.

Building a comprehensive evaluation setup and methods for
ogical fallacy identification has several key challenges. First,
hile prior work has provided a list of taxonomies for orga-
izing logical fallacies, it is unclear how they can be organized
nd aligned with existing benchmarks. Second, logical fallacies
equire an abstraction from syntax to high-level semantics re-
olving around structure and soft logic. This makes pure lan-
uage model-based methods insufficient for fully solving the task.
hird, arguments rely heavily on background factual and com-
onsense knowledge. A robust and explainable method needs
echanisms to make implicit (assumed) knowledge in fallacies
xplicit. Fourth, given the large set of fallacies and the relatively
mall amount of annotated examples for supervised learning,
ata sparsity is a serious issue. To build robust and explainable
ethods, it is essential to devise scalable mechanisms that can
ombat data sparsity.
In this paper, we consider the research question: How can

e build methods for robust and explainable identification of logi-
al fallacies in natural language arguments? We consolidate prior
ork on taxonomizing logical fallacies into a three-stage frame-
ork of logical fallacy identification tasks, ranging from decid-

ng whether there is a logical fallacy in an argument (logical
allacy detection), performing classification in high-level classes
coarse-grained classification), and finally performing classifica-
ion into a wider range of specific classes (fine-grained classifica-
ion). To deal with the need for abstraction and to fill knowledge
aps, we experiment with three families of methods: prototype-
ased reasoning, instance-based reasoning, and knowledge injec-
ion. We combat data sparsity through suitable methods for data
ugmentation and curriculum learning.
The contributions of this paper are as follows:

1. We design a three-stage framework of logical fallacy iden-
tification tasks, inspired by fallacy classification theories.
We map and enhance existing datasets into this pipeline
to provide a well-motivated and representative evaluation
set.

2. Our framework includes a wide range of methods with a fo-
cus on robustness and explainability: prototype-based rea-
soning, instance-based reasoning, and knowledge injection.
We complement these methods with strategies for distant
learning from more data based on data augmentation and
curriculum learning.

3. We conduct an extensive evaluation of these methods on
our datasets, focusing on their robustness and explain-
ability. Our results provide insight into the strengths and
weaknesses of the methods on different components and
fallacy classes, indicating that fallacy identification is a
challenging task that may require specialized forms of rea-
soning to capture various classes.

The rest of this paper is structured as follows. A compre-
ensive study of different classification schemas on logical fal-
acies, together with our three-stage framework, is presented
n Section 2. Prior work that detects logical fallacies or uses
elated methods to ours is reviewed in Section 3. We describe
he adopted methods in Section 4 and the experimental setup in
ection 5. Our results accompanied by the extra ablation studies
2

re presented in Section 6. We discuss our findings and conclude
he paper in Sections 7 and 8.

We make all our code and data available on GitHub at https:
/github.com/usc-isi-i2/logical-fallacy-identification.

. Organizing logical fallacies

There are two broad categories of fallacies: formal, involving
the error in the logical structure of the argument, and informal,
ostly concerned with the content of the argument or the latent
rror in their expression of logic [17]. In this study, we focus on
he latter. Within informal fallacies, various definitions and cate-
orizations of logical fallacies have been proposed since antique
reek philosophers such as Aristotle [3]. Aristotle’s Sophistical
efutations [3] and John Locke’s An Essay Concerning Human Un-
erstanding [18] can be considered as the cornerstones of works
n logical fallacies, followed by notable contributions by others,
specially Copi [15], Barker [1], and Watts [19]. We elaborate on
ach of the aforementioned philosophical theories in Section 2.1.
hen, in Section 2.2, we devise our logical fallacy framework
hat is rooted in these philosophical theories, and it formalizes
hem into three stages: fallacy detection, coarse-grained classi-
ication, and fine-grained classification. We describe the coarse-
nd the fine-grained classes that constitute our taxonomy of
ogical fallacies.

.1. Existing theories of categorization for logical fallacies

Aristotle [3] distinguishes several kinds of deductions (syl-
ogisms) in [3]. Broadly, he groups the fallacies into the ones
ependent on language (In Dictione) and the ones not dependent
n language (Extra Dictionem). His categorization revolves around
he premises discussed in the deductions as well as the condi-
ions required for arguments to prove them correct. According to
ristotle, an argument satisfies three conditions, and ‘‘is based on
ertain statements made in such a way as necessarily to cause the
ssertion of things other than those statements and as a result of
hose statements’’. Thus an argument may fail to be a syllogism
n three different ways: (1) the premises may fail to necessitate
he conclusion, (2) the conclusion may be the same as one of
he premises, and (3) the conclusion may not be caused by (or
rounded in) the premises. Aristotle’s fallacies are primarily fal-
acious deductions that appear to be correct on the surface. There
re six classes of fallacies dependent on language: Equivocation,
mphiboly, Combination of Words, Division of Words, Accent, and

Form of Expression. Additionally, there are seven kinds of logical
fallacies (sophistical refutation in Aristotle’s words) that can occur
in the category of fallacies not dependent on language: Accident,
Secundum Quid, Consequent, Non-Cause, Begging the Question, Igno-
ratio Elenchi and Many Questions. In summary, Aristotle classifies
fallacies into thirteen classes.

Barker [1] classifies logical fallacies based on the validity of the
assumptions made when transitioning from premises to conclu-
sions, as well as the validity of the premise and the conclusion
themselves. Barker defines validity as follows. First, a valid argu-
ment would comprise premises that are all true. Second, it would
not need the conclusions to satisfy their validity. And finally,
its conclusions can be directly derived from the premises. This
view is closely similar to Aristotle’s, as well as the requirements
that [20] have analogously proposed. Neglect of the third require-
ment gives rise to the fallacies of Non Sequitur that are fallacies
that have an insufficient link between premises and conclusions.
Neglect of the second requirement gives rise to fallacies of Petitio
Principii in which ‘‘the premises are related to the conclusion in
such an intimate way that the speaker and his hearers could not
have less reason to doubt the premises than they have to doubt

https://github.com/usc-isi-i2/logical-fallacy-identification
https://github.com/usc-isi-i2/logical-fallacy-identification
https://github.com/usc-isi-i2/logical-fallacy-identification
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he conclusion’’. Neglect of the first requirement gives rise to the
emaining category of fallacies in which premises are present
hat are not necessarily true all at once, even if the link between
remises and conclusions is as rigorous as can be. In summary,
dentifying fallacious arguments would boil down to analyzing
he validity and soundness of the claims as well as the sufficiency
nd necessity of the premise of arguments to satisfy the needs of
he conclusion to be true. There are three levels of classification
roposed in [1] that, on the finest level, would sum up to twenty
lasses of fallacies, although his categorization allows for more as
ell and he does not argue for a bounded definition or particular
umber.
Locke [18] can be credited with the contribution of Ad-

rguments, which are arguments ‘‘that men, in their reasoning
ith others, do ordinarily make use of to prevail on their assent;
r at least so to awe them as to silence their opposition’’. Locke
iscusses three kinds of such arguments: Ad Verecundiam, Ad

Ignorantiam, and Ad Hominem. According to him, these are not fal-
lacies, but have been developed beyond his conception and have
been named as such [21]. Ad Verecundiam, or Appeal to Authority is
a fallacy when it is either on the ground that authorities (experts)
are fallible or for the reason that appealing to authority is an
abandonment of an individual’s epistemic responsibility [22]. Ad
Ignorantiam, or Appeal to Ignorance, happens when one demands
‘‘the adversary to admit what they allege as a proof, or to assign a
better’’. In other words, the Ad Ignorantiam fallacy happens when
the argument claims a proposition to be true because there is
no evidence against it. According to Locke, Ad Hominem was a
ay ‘‘to press a man with consequences drawn from his own
rinciples or concessions’’. That is, to argue that an opponent’s
iew is inconsistent, logically or pragmatically, with other things
e has said or to which he is committed to [22].
Copi [15] defines fallacies as ‘‘a form of argument that seems

o be correct but which proves, upon examination, not to be so’’.
opi discusses both deductive invalidities and inductive weak-
esses as sufficient reasons for arguments to be fallacious. From
he eighteen informal fallacies he categorizes, eleven are borrowed
from [3] and the other seven can be traced back to [18]. He
breaks down fallacies into formal fallacies and informal fallacies.

ith his definition over formal fallacies pertaining to the deduc-
ive fallacies, he classifies Affirming the Consequent, Denying the
ntecedent, The Fallacy of Four Terms, Undistributed Middle, and
llicit Major as formal fallacies. Focusing on the informal falla-
cies, Copi defines two broad categories as Fallacies of Relevance
and Fallacies of Ambiguity. Fallacies of Relevance include Accident,
Converse Accident, False Cause, Petitio Principii, Complex Question,
Ignoratio Elenchi, Ad Baculum, Ad Hominem Abusive, Ad Hominem
Circumstantial, Ad Ignorantiam, Ad Misericordiam, Ad Populum, and
Ad Verecundiam, while Fallacies of Ambiguity include Equivocation,
Amphiboly, Accent, Composition and Division.

We conclude that the described categorizations [1,3,15,18]
mostly agree on the definition of fallacious arguments as well
as the broad categorizations of fallacies. The main difference
lies in the fine-grained categorizations: Aristotle [3] discusses
the thirteen ways arguments can be fallacious, while Copi [15]
proposes eighteen different fallacy groups. Barker [1] categorizes
fallacies into twenty classes although he does not delineate the
exact categorization or the number of classes, and all presum-
ably borrow Ad Fallacies from Locke [18]. These discrepancies
require computational approaches for logical fallacy identification
to choose between the proposed theories. For our experimental
work, we adopt the broad categorization of [15], and the fine-
grained classification by [16,23]. We describe our categorization
further in Section 2.2.
3

2.2. Logical fallacy framework

We design a three-stage framework (Fig. 1) as an overarching
testbed for prior research on logical fallacies. The first stage of the
logical fallacy detection aims to identify whether a logical state-
ment contains a logical fallacy or not. The detection is formalized
as a binary classification task to identify the arguments that are
logically fallacious in any sense. If a fallacy has been detected, the
goal of the second stage is to categorize the fallacy into one of a
few broad classes (e.g., Fallacy of Relevance). In the third stage, the
aim is to further classify a fallacy into a fine-grained class (e.g., Ad
Populum).

Following [15], we consider the following four coarse-grained
classes: Fallacy of Relevance, Fallacy of Defective Induction, Fallacy
of Presumption, and Fallacy of Ambiguity. Fig. 1 shows the sub-
categorizations we make from these coarse-grained classes to
fine-grained classes described in [16]. To perform the mapping,
we use the definitions of fine- and coarse-grained classes given
in [15]. We next describe our fallacies in detail.

Fallacy of Relevance occurs for arguments with premises that
are logically irrelevant to the conclusion. Fallacy of Relevance
subsumes the fine-grained classes Ad Hominem, Ad Populum, Ap-
peal to Emotion, Fallacy of Extension, Intentional Fallacy. All of
these fallacy classes present different means for using peripheral
premises as support for claims. Ad Hominem contains sentences
where an attack over the subject acts as a premise for the claim
made in those sentences, while Appeal to Emotion involves ma-
nipulating the recipient’s emotions to prove a claim. Ad Populum
involves affirming claims based on popular belief, and Fallacy of
Extension uses exaggeration for affirming claims based on the
corresponding sentences. Intentional Fallacy is directed towards
using subconscious choices to incorrectly support an argument.

Within the broad class of Fallacy of Defective Induction, the
premises seemingly provide ground for the conclusion but upon
analysis prove to be insufficient and weak for supporting the
claim made. Fallacy of Defective Induction is specified via five
fine-grained categories, namely False Causality, False Dilemma,
Faulty Generalization, Fallacy of Logic, and Fallacy of Credibility.
Arguments that jump to a conclusion without implying a causal
relationship between the premise and the claim fall under False
Causality. If the specific causal relationship between the premise
and the claim is generalized to a wider category of subjects,
the argument is categorized as Faulty Generalization. Arguments
that cast doubt regarding the credibility of the subject making
a claim constitute for Fallacy of Credibility. When an argument
presents a premise that erroneously limits the options available,
it constitutes a False Dilemma. When the logical construct of the
argument is inaccurate and misleading, it constitutes a Fallacy of
Logic.

Fallacy of Presumption takes place when the inference to
the conclusion depends mistakenly on unwarranted assumptions.
Fallacy of Presumption includes the following fine-grained classes.
Circular Reasoning occurs for arguments that come back to the
beginning without proving themselves. Other classes that fall
within Fallacy of Presumption are: Begging the Question, where
the conclusion is treated like an assumption from the premise of
the statement; Complex Question, where the argument is framed
as a loaded question that intends to prove another latent un-
proved assumption; and Accident, where generalization is applied
to specific cases that are out of scope.

Fallacy of Ambiguity occurs when words or phrases are used
in an equivocal way, thus causing ambiguity in the logic that
connects the premise and the conclusion. The fallacy class Equiv-
ocation is a Fallacy of Ambiguity due to the presence of phrases in
arguments that are used interchangeably in different parts of the
sentence, leading to ambiguity in logic. Other classes in Fallacy
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Fig. 1. Three-stage taxonomy of logical fallacy identification. Coarse-grained classes are shown in boldface, while regular font is used to show fine-grained classes.
We use solid and dotted boundaries to distinguish between fine-grained classes that we include and exclude in our experimental study, respectively.
Table 1
Examples for fallacious arguments belonging to different coarse-grained and fine-grained classes covered in our work.
Coarse-Grained Class Fine-Grained Class Example

Fallacy of Relevance Ad Hominem Boris is not qualified to make suggestions about our penal system. As an
ex-convict, he would always take the criminals’ side.

Ad Populum Aliens must exist because most people believe in them.
Appeal to Emotion Luke didn’t want to eat his vegetables, but his father told him to think about the

poor, starving children in a third world country who don’t have anything to eat.
Fallacy of Extension If you don’t drive a car, you hate the Earth.
Fallacy of Relevance I know you want to imprison me for having murdered my parents, but judge,

have mercy on me, I’m an orphan!
Intentional A woman decides to visit a certain doctor after only asking advice on the best

doctors from ONE friend.

Fallacy of Defective Induction False Causality The temperature has dropped this morning, and I also have a headache. The cold
weather must be causing my headache.

False Dilemma Subscribe to our streaming services, or get stuck with cable!
Faulty Generalization My friend said her Math class was hard, and the one I’m in is hard, too. All Math

classes must be hard!
Fallacy of Credibility My uncle is a mechanic and he says you shouldn’t spank children. He says it’s

ineffective.
Fallacy of Logic Employees are like nails. Just as nails must be hit in the head in order to make

them work, so must employees.

Fallacy of Presumption Circular Reasoning Quinoa is a delicious, plant-based source of protein because it tastes so darn
good.

Fallacy of Ambiguity Equivocation The officer told me to freeze but it was too hot out to be freezing, so I was
justified in running away.
of Ambiguity include Amphiboly, Accent, Composition, and Division.
n the case of Amphiboly, the usage of words that could be used
nterchangeably leads to a false interpretation in the grammatical
onstruction of the sentences. Accent fallacy is one, where a spe-
ific phrase or word carries a different contextual meaning in the
remise and the conclusion. Mistaken inferences about parts of a
hole argument for drawing inferences about attributes for that
rgument constitute the Composition fallacy. Division fallacy is
he reverse of the Composition fallacy, where mistaken inferences
bout the whole argument are used for drawing inferences about
ttributes of parts of it.
We provide examples for each of the fine-grained and coarse-

rained classes in Table 1. A simplifying assumption we make
n this work is that each fallacious argument belongs to exactly
ne broad class and exactly one fine-grained class. Prior work
4

[7,16] has shown that this assumption does not always hold, for
example, ‘‘Drivers in Richmond are terrible. Why does everyone in a
big city drive like that?’’ as cited in [16], is an example that belongs
to Ad Hominem but does have flavors of Faulty Generalization as
well. This gives room for arguments to be categorized into dif-
ferent fallacy classes simultaneously. Our simplifying assumption
restricts our classification task to a multi-class task rather than a
multi-label task.

3. Related work

In this section, we review prior computational work on log-
ical fallacy detection and the related task of propaganda detec-
tion. We also review related work that leverages the methods
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f case-based reasoning, knowledge injection, and curriculum
earning.

Logical Fallacy. Prior computational work formalizes argu-
ments containing logical fallacies to make them suitable for inges-
tion by rule-based systems and theoretical frameworks. Gibson
et al. [24] formalize and identifies formal logical fallacies using
rgument Markup Language (AML) and discusses the theoreti-
al questions that arise in the study of fallacy. Yaskorska et al.
25] adopt a structure-aware approach to identify, include, and
liminate formal fallacies in natural dialogues. Nakpih and San-
ini [20] present a model that discovers non sequitur fallacies in
egal argumentation using Prolog language and check the valid-
ty, soundness, sufficiency, and necessity of argumentation using
ogical rules. These works mostly focus on formal fallacies, which
re defined in terms of their structure. In our work, we focus
n informal fallacies, whose detection and classification rely on
inguistic and world knowledge.

One of the few studies done on informal fallacies [16] proposes
he task of logical fallacy detection, where arguments are classi-
ied into thirteen fine-grained fallacies. This work evaluates the
ffect of using large pretrained language models on two datasets,
alled LOGIC and LOGIC Climate. Apart from using large pre-
rained language models, Jin et al. [16] try to abstract away from
he surface of the arguments by exploiting coreference resolution
nd entity linking, in order to identify logical fallacies that are
tructurally fallacious in their arguments. Similarly, Goffredo et al.
26] alongside presenting an annotated dataset of 31 political
ebates from the U.S. Presidential Campaigns, use transformer-
ased language models and process four parts of arguments,
.e., the dialogue context, argument components (premise and
laim), fallacious argument snippet, argument relation (attack or
upport) separately, classify them, and train all the models jointly.
hey show that detecting argument components, relations, and
ontext (see also [27]) in debates is a necessary step to improve
he model’s performance. The main difference between [26] and
ur study is the fact that we do not need and use any context
o classify logical fallacies. Furthermore, our framework does not
ssume any specific structure for text, and hence can be more
eneralizable. In our work, we reuse the dataset from [16], and
lso extend its evaluation framework by: (1) introducing a binary
etection and coarse classification stage, (2) employing methods
ith robust properties to satisfy the needs of classification of

ogical fallacies that go beyond language understanding brought
y vanilla language models, (3) adapting our methods with na-
ive explainability, and (4) carrying out a more extensive set of
xperiments and analyses.
Propaganda Detection. Recent research has developed bench-

arks and techniques for propaganda detection in natural lan-
uage documents. A significant portion of these works focuses on
xtracting better features as well as novel methods that would
elp the model boost its performance [28–32]. There has also
een a surge focusing on the interpretability of models in pro-
aganda detection [33–35]. Dimitrov et al. [36] show that pro-
aganda techniques function as shortcuts in the argumentation
rocess that connect to the emotions of the audience and often
nclude logical fallacies. In [37], logical fallacies are called ‘‘hall-
arks of propagandist messaging’’, which implies that logical

allacies can be seen as components within the broader task of
ropaganda detection. However, as pointed out by Jin et al. [16],
he two tasks overlap but are distinct, since propaganda detection
ocuses on arguments that aim to influence people’s opinions
ften using misinformation as a tool [38,39], while logical fallacy
etection aims to understand gaps in argumentation. There is
lso a practical difference between the formalization of these
wo tasks, as propaganda detection data has typically focused on
onger input documents, while logical fallacy datasets have gen-
rally relied on focused and isolated text inputs. In our study, we
5

utilize the overlap between some of the propaganda techniques
and fallacy classes, by augmenting the training data for logical
fallacy classification with a dataset gathered explicitly around
propaganda detection [40].

Case-Based Reasoning. The case-based reasoning framework
has been used to learn from past experiences explicitly in medi-
cal applications [41,42] and mechanical engineering [43,44]. One
of the most important aspects of case-based reasoning is its
inherent interpretability. Walia et al. [45] use case-based reason-
ing as an interpretation model for Word Sense Disambiguation,
while Brüninghaus and Ashley [46] apply case-based reasoning
to predict the outcome of legal cases. Ford et al. [47], Ge et al.
[48] and Han et al. [49] advocate for the increase in compre-
hension of the black-box models and their explainability as well
as transparency using example-based explanations by the end-
users. Similar to our work, Spensberger et al. [50] explore the
effect of case-based reasoning on the student social workers and
their fallacy recognition abilities and find that those who have ac-
cess to worked examples perform better during the experiment.
In this paper, we adopt two complementary case-based reasoning
methods. First, we adopt the instance-based reasoning method
proposed by [51] that enriches the inputs with similar cases
and with different case enrichments (e.g., based on counterargu-
ments), and evaluates the impact of different modeling decisions
and case representations on the model performance. We apply
this method to our three-stage evaluation framework and per-
form further ablation studies to understand its performance in
relation to modeling decisions and against other systems. Second,
we include a prototype-based reasoning method, that maps novel
examples to prototypical ones to classify logical fallacies. With
both of these methods, we use case-based reasoning both as a
means to enhance the performance of our model and simultane-
ously as a proxy to explain the behavior of the model classifying
logical fallacies.

Knowledge Injection. The challenge of generalizability and
transferability for logical fallacy classifiers has been discussed
in [16], by testing the model on a dataset containing unseen
domain-specific subjects. This motivates the need for the injec-
tion of background knowledge. Injection of background, espe-
cially commonsense knowledge in language models has been
proposed within tasks of multiple-choice question answering.
Combining neural language models with commonsense knowl-
edge graphs (KGs) like ConceptNet [52] or ATOMIC [53] can
be done by lexicalizing knowledge into task-targetted evidence
paths and combining them with the task input [54,55]. The idea
in K-BERT [56] is similar — here a multi-head attention layer is
used to combine evidence from background knowledge and the
input task. Other forms of knowledge injection have been popular
as well, such as using graph and relation networks [57,58], or
introducing the entire KG at training time regardless of the task
at hand [59,60]. Notably, prior work has shown that the impact of
the injected knowledge strongly depends on the overlap between
the knowledge in these graphs and the downstream question
answering task [60,61]. Due to the nature of logical fallacies,
they can cover daily-life matters and events spreading through-
out social media, and this calls for domain-specific knowledge
for comprehension of certain logical fallacies. However, to our
knowledge, exploiting external knowledge has not yet been fully
explored in logical fallacy detection. Trying to fill in the gap
and utilize commonsense knowledge in the detection of logical
fallacies, we use [56] to incorporate knowledge from arbitrary
knowledge bases and benefit from potential enhancements.

Curriculum Learning. Curriculum learning has been proposed
in [62,63] from the computer science and psychology perspec-
tives respectively. The key idea of curriculum learning is that

starting from simple examples and learning from examples in an
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Fig. 2. Three stages of the IBR pipeline. Using the new Case C , retriever finds k similar examples {S1, S2, . . . , Sk}, and creates S = C ⊕ ⟨SEP⟩ ⊕ S1 ⊕ S2 ⊕ · · · ⊕ Sk .
he adapter encodes these two inputs and tries to adapt S based on the new case C . Finally, the classifier uses the rectified information from the adapter to classify
he new case by outputting the probabilities corresponding to belonging to each class of fallacies (in the example shown above, k = 1).
(
a
(

4

4

i
l
a
s
i
c
i
t

g
t
c
t
p
t
m
t
n
p
c
t
e
n
c

rganized and meaningful way can contribute positively to the
earning process. Using pure language model-based methods does
ot suffice for a reliable classification of logical fallacies [16], due
o known issues of robustness and induction capabilities of vanilla
anguage models on unseen data [64,65]. This motivates us to
everage continual curriculum learning to attempt to improve the
onvergence and robustness capabilities of models, an idea that
as not yet been explored in logical fallacies. The application of
urriculum learning to logical fallacies in our work is facilitated
y the availability of datasets at different granularity levels.

. Method

Due to the difficulty, as well as the contention over the cat-
gorization and classification of logical fallacies [23], we use
ethods that humans usually adopt when faced with problems

hat require complex reasoning. According to [66–68], people use
imilar or prototypical examples of a situation or problem to
olve or approach a new one. The alluded similarity can be in
he various levels, namely, coarse-grained features such as the
hole argument or statements, but also in the more fine-grained

eatures and in terms of the extra knowledge one might have
bout concepts or entities discussed in the sentences as discussed
y [69]. Having in mind the simplicity as well as explainability
f using similar examples or experiences to reason about and
olve new problems or situations, we adapt methods for Instance-
ased Reasoning, Prototype Learning, and Knowledge Injection
Section 4.1). Another approach that humans follow for learning
ow to solve problems is starting from easy or simpler tasks
nd gradually shifting to harder ones to learn [63], which has
een shown to work even better than other learning strategies
y Chen and S. Savage [70]. This has been shown to be the case
or neural networks as well [71], not as a barrier, but as a way of
raining more robust models referred to as Curriculum learning
6

Section 4.2). Finally, we devise data augmentation strategies to
ddress data sparsity and improve the stability of our models [72]
Section 4.3).

.1. Explainable reasoning methods

.1.1. Instance-based reasoning
Instance-based reasoning (IBR) [73] is the process of solv-

ng new problems based on the solutions of similar past prob-
ems [74]. IBR is reported to resemble the way humans think
nd approach new problems to save time and effort instead of
tarting from scratch [66]. IBR is a formalization of the general
dea of Case-based reasoning (CBR) [74]. Within CBR, rather than
omparing new problem instances with instances seen before like
n IBR, we use past similar problems and experiences and attempt
o perform explicit generalization or induction.1

IBR starts with a set of cases or training examples; it forms
eneralizations of these examples, albeit implicit ones, by iden-
ifying commonalities between a retrieved case and the target
ase, and tries to approach the new case using known solutions
o past cases. Our IBR formulation (Fig. 2) follows the three-stage
ipeline proposed by [51] consisting of: (1) Retriever — given a
arget problem, retrieve similar cases with known solutions from
emory, (2) Adapter — adapt the retrieved similar cases to help

he decision on the new case, and (3) Classifier — classify the
ew case based on the adapted exemplars. The last step in this
ipeline corresponds to two steps in the formulation by [75]:
lassify the new case based on the previous examples, and retain
he new problem alongside its adapted solution and resulting
xperience in memory for later use in a more explicit way. We
ext describe the design of the retriever, the adapter, and the
lassifier.

1 We cover another variant of CBR, prototype theory, in Section 4.1.2.
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Retriever is responsible for finding similar cases Si to the new
case C from a database and passing them to the adapter together
with the new case (S = C ⊕⟨SEP⟩⊕ S1 ⊕ S2 ⊕ · · ·⊕ Sk extracting
k similar examples). The retriever uses language model encoders
to get the feature vectors for each new case as well as all the
previous cases in the retriever database and uses these features
to compute their cosine similarity.2 The retriever obtains the k
most similar examples from the database, which are then passed
on to the adapter module.

We experiment with SimCSE [78], a Transformer-based re-
triever that is optimized for capturing overall sentence similarity
using a contrastive loss function. We also include sentence en-
coders that are reportedly able to manipulate a wide range of
concepts, by using Sentence-BERT [79] based on MiniLM [80].
We also include Transformer models that have been trained to
distinguish emotional expressions, since it has been shown that
emotions can be used to manipulate masses [81] and they are
intuitively important to detect certain logical fallacies, such as
Appeal to Emotion. To capture the usage of empathetic and emo-
tional terminology, we use a RoBERTa model [82] fine-tuned on
the WASSA 2022 Shared Task dataset [83].

Adapter transforms the retrieved cases {S1, S2, . . . , Sk} to-
gether with the new case C denoted as S as well as the new case
C , and prioritizes earlier cases that are most helpful. The adapter
consists of two parts: an encoder and an attention mechanism. As
an encoder, we use a language model that takes as input C and
S and produces a set of raw hidden states EC and ES respectively
without a head layer on top.

The attention mechanism selects the most important informa-
tion to be considered from similar cases. Based on the second
step of the pipeline by [75], after the similar cases are retrieved,
some of these similar cases should be manipulated or adapted to
help the classifier at the end of the pipeline, since not all similar
cases will be equally helpful for the model. We formalize this step
with an attention mechanism on top of the encoded cases (ES and
EC ) to filter the retrieved cases or shift the attention to where it
helps the model best to reason about new cases. More concretely,
we use a Multi-headed attention component [84] that fetches
the new case embedding EC as the query and the combined
embeddings ES as both keys and values. We include both the new
case as well as similar cases in S to avoid losing information from

2 We also experiment with encoding the input examples as either AMR
raphs [76], using explanation graphs [77], or their combination, however, we
o not pursue this direction further due to poor performance and explainability.
7

the new case. The output of this component, i.e., the attention
output A has the same shape as EC and ES and is fed to the last
step of IBR, i.e., the classifier.

Classifier layer at the end of the pipeline is applied on top of
the adapter output A to predict the labels. As a classifier, we use a
two-layer perceptron with a gelu [85] activation function. Given a
number of classes C , we compute C logits and their corresponding
robabilities of belonging to each class c . We use cross-entropy
oss as our learning objective.

Overall, the IBR method is similar to a language model with
classification head on top with an important distinction. By
sing a retriever and finding similar examples to the new case
nd integrating these new examples in the classification process,
e benefit in two ways: (1) we use similar examples of an
rgument to help the model classify the argument more accu-
ately, and simultaneously, (2) enhance the explainability of the
odel, showing the end-users similar examples of an argument

o lift end-users’ understanding of the capabilities and acquired
nowledge of the model [86].

.1.2. Prototype-based reasoning
Prototype theory [68] is a theory of categorization in psychol-

gy and cognitive linguistics, in which there is a graded degree
f belonging to a conceptual category, and some members are
ore central than others. In prototype theory, any given concept

n any given language has a real-world example that best rep-
esents this concept, i.e., its prototype. Like IBR, prototype-based
easoning (PBR) is also an instance of case-based reasoning, and
here has been some controversy about the superiority of one
ver the other. There are both claims about the superiority of
rototypical examples over normal examples [87], as well as their
ounterparts [88] who state that a context theory of classification,
hich derives concepts purely from exemplars works better than
class of theories that included prototype theory (Section 6.4).
We build on the deep learning adaptation of the prototype

heory by the Prototex [89] method. The architecture of Prototex
s shown in Fig. 3. Prototex is based on the Prototype Classifica-
ion Network proposed in [90]. The Prototex architecture contains
n encoder f and a special prototype layer p, where each unit of

that layer stores a weight vector that resembles a prototypical
example. The prototype layer includes both positive and negative
prototypes, aiming to help the models distinguish between the
presence and absence of features that support any given class.
The input x is first encoded into a latent representation that is
shared between the input data and the prototype layer p. This
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Fig. 4. Example sentence tree construction in K-BERT.
epresentation is used to calculate the euclidean distance with
he prototype layer p, resulting in a distance vector d. We mask
he distance vector with a distance mask layer m. The role of
he distance mask m is to make the model only optimize the
roximity of input examples of a particular class to a fixed set
f prototypes. In other words, the distance mask directs the pro-
otypes to represent prototypical examples of a particular class
nstead of a mixture of arbitrary classes. The masked distance
ectors between input examples and prototypes are further fed to
fully connected layer w followed by a softmax layer s to classify

a particular data point. To have interpretable prototype vectors,
the model is optimized with auxiliary loss terms that bring the
embeddings of the training examples closer to the prototypes
and also the embeddings of the prototypes closer to the input
examples.

The Prototex method was originally designed for binary clas-
sification between propagandistic and non-propagandistic sen-
tences. We modify the Prototex architecture to support a multi-
class classification setup. Moreover, the original architecture uses
a sequence-to-sequence model, BART [91]. For a fair comparison
to our other methods and inspired by the best results on logical
fallacy reported in [16], we replace the BART encoder model in
Prototex with a self-supervised language model, Electra [92]. We
do not use the decoder network and instead focus on the learned
prototypes and their explanations.

4.1.3. Knowledge injection
Many fallacy classes rely on the ambiguous structure of the

logical construct in sentences to introduce flaws in arguments. Let
us consider the example sentence The police asked me to freeze,
but it was a hot day. So I was justified in running away, which
belongs to the fallacy class Equivocation (Fig. 4). Here, the word
freeze is used in two contexts, one for where the police asked to
freeze and another, where the antonym of freeze, i.e, hot is used in
the sentence. Such sentences, with latent fallacies, illustrate the
need for models to have access to commonsense knowledge.

We propose a knowledge injection (KI) formulation, where
background commonsense knowledge is combined with the orig-
inal input for the language model. We adopt a popular method
for injecting background knowledge in language models, called K-
BERT [56]. K-BERT introduces knowledge injection to a BERT [93]
model by querying a structured knowledge base. This knowledge
base consists of a set of triples of the form (subject, predicate,
object). In the first layer, i.e., the knowledge layer, triples from
the knowledge base are connected along with the tokens of the
sentences, forming a sentence tree, as illustrated in Fig. 4. The
embedding layer of K-BERT flattens out the sentence tree by re-
taining the structural information in the form of a visible matrix.
As stated in [56], a crucial goal of K-BERT is to prevent false
semantic changes to the original sentence due to the addition of
sentence trees from the knowledge base. K-BERT functions simi-
larly to BERT [93] but uses a masked self-attention mechanism.
8

Fig. 5. Our knowledge injection architecture, which is an adaptation of the
K-BERT method.

The masked self-attention mechanism takes the visible matrix
calculated by the seeing layer and ensures that the knowledge
branches are not isolated from the tokens they are associated
with and do not change the context of the general sentence that
they are connected to. The classification task in K-BERT uses the
Masked Language Modeling objective.

Our KI adaptation of the K-BERT method focuses on the in-
put of the knowledge layer, as shown in Fig. 5. We adapt K-
BERT to leverage knowledge from the Commonsense Knowledge
Graph (CSKG) [94], which consolidates commonly used public
commonsense sources like ConceptNet [52], ATOMIC [53], and
WordNet [95]. The information in CSKG is structured as (subject,
relation, object) triples. To link to these triples, we extract all non-
stopword tokens from the sentences as individual words and we
match them with triples in CSKG where the words act as subjects.

Since CSKG contains multiple relations associated with the
same subject, a key question is how to prioritize or select rela-
tions (triples) that are most relevant and informative for the input

sentence. Following [60], we only use the 14 highly semantic
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Fig. 6. Three-stage curriculum pipelines for Forward Curriculum Learning and
Reverse Curriculum Learning.

relations in CSKG, namely ’Causes’, ‘UsedFor’, ‘CapableOf’, ‘Caus-
esDesire’, ‘IsA’, ‘SymbolOf’, ‘MadeOf’, ‘LocatedNear’, ‘Desires’, ‘AtLo-
cation’, ‘HasProperty’, ‘PartOf’, ‘HasFirstSubevent’, ‘HasLastSubevent’.
urthermore, we add a Similarity Ranking component, which
anks the retrieved triples according to their relevance to the
riginal sentence. To do so, we estimate the contextual similarity
f the triple to the original sentence by using the cosine similarity
f their BERT [84] embeddings as a proxy. The cosine similarity
s directly used to order the triples in order of priority. The
riples with the highest similarity are injected into the original
entence, thus enriching it with commonsense knowledge. In our
xperiments with KI, we investigate the impact of the width and
epth of the knowledge retrieval procedure. For this purpose, we
est different branching factors (b), representing the maximum
number of obtained relations per subject, and different numbers
f hops, representing the path length between the subject and the
ubsequent relations discovered iteratively based on the entities
f the previously discovered relation.
Returning to our example in Fig. 4, we see that the knowledge

erived from CSKG helps in providing the context for the word
reeze, as a synonym for arrest. Similarly, background knowledge
ells us that the word hot is related to temperature. On the surface,
he words freeze and hot seem to be used in the same context,
ut the background information from the knowledge base helps
n indicating that they are based on two completely different
ontexts. The background knowledge for police also bolsters that
he usage of the word freeze was intended for an arrest. This
additional knowledge helps in identifying the ambiguous usage of
words and connects the terms based on making implicit knowl-
edge explicit. As the additional context (arrest, law enforcement)
is not directly connected, we rely on the ability of the BERT LM
to estimate the contextual similarity between these terms. Thus,
the combination of CSKG and LMs would lead to the classification
of the logical fallacy in the sentence as one of equivocation.

.2. Curriculum learning with language models

Curriculum learning (CL) [62] is a strategy that exploits the
varying complexity across ordered tasks in a pipeline to increase
performance. CL uses previously learned concepts in the task
pipeline and applies this information to more complex tasks
in the latter half of the pipeline. We follow prior work [96]
to formulate two variants of CL (Fig. 6). Our Forward Curricu-
lum Learning (FCL) strategy exposes the model to increasingly
demanding tasks, similar to how humans learn concepts. We
also experiment with the inverse strategy of Reverse Curriculum
Learning (RCL), which starts with a difficult task and gradually
adapts the model for increasingly easy tasks.

Forward Curriculum Learning (FCL) For FCL, we primarily
experiment with continuous training of Transformer language
model variants. We try to induce fallacy knowledge in a discrete,
three-stage curriculum pipeline, going from the simplest (binary
9

fallacy detection) to the most complex (fine-grained classifica-
tion) tasks. Through the binary classification stage, we aim to
introduce the structural and topical knowledge required to iden-
tify fallacies in arguments. The model uses this information in
the subsequent (coarse-grained) stage to learn about the broad
categories of fallacies. These learned coarse representations are
then transferred to and trained further on the fine-grained fallacy
classification objective.

Reverse Curriculum Learning (RCL) Rohde and Plaut [96]
discovered that learning from simple to complex examples is
sometimes not as effective as learning complex patterns directly
first. Although they revised their claims in a subsequent pa-
per [97], we explore the capabilities of the models trained with a
reverse curriculum, i.e., moving inversely from complex to simple
examples, which allows us to compare the different curriculum
learning strategies for the task of logical fallacy identification.
For RCL, we first train on the fine-grained classes and use these
weights for the coarse-grained classification task. We ultimately
test their applicability on the binary fallacy detection task.

4.3. Data augmentation

Besides curriculum learning, we experiment with using data
augmentation for addressing data sparsity. We devise two data
augmentation strategies: modifying the original task data and
adapting related benchmarks.

Augmentation by Modifying the Original Task Data. We
pply commonly used text augmentation techniques for improv-
ng the performance and enhancing contextual understanding
or logical fallacy detection and classification. We begin with a
asic WordNet [95] similarity-based augmentation. This involves
sing the synsets to substitute the words in the input with words
hat have the closest meaning according to the synset. Second,
e evaluate word embedding substitution methods based on
ord2Vec and transformer embeddings. These substitutions in-
olve finding word vectors that are closest to the input word
ector in the embedding space and replacing them. Lastly, we
xperiment with a more recent technique of back-translation,
opularized by [98] and originally proposed by [99]. This in-
olves translating the input sentence into a language that is
yntactically and morphologically dissimilar and subsequently
everse-translating this translation back to the original language.
o select languages, we follow the insights from prior work
98–100]. As the parental tree for a language must be analyzed,
anguages that have fewer cognates are preferred as they enhance
ariety. Additionally, the use of two translation models trained
n different datasets has been found to usually work better and
rovide more diversity to the output sentence. The most popular
hoices for back-translation model pairs are German ↔ English,
urkish ↔ English, and French ↔ English.
Table 2 shows representative examples of the obtained aug-

mentations for two input sentences. We observed that the Word-
Net and Word2Vec techniques introduced excessive noise in our
trials, which ended up deteriorating the performance of our mod-
els. For the back-translation, we experiment with German ↔

nglish translation models for the augmentation because of the
yntactical dissimilarity between the two languages. Although
he back-translation method was able to broaden the variety
f the sentence structure, it occasionally led to the rephrasing
f the actual fallacious components of the sentences. Therefore,
hile we believe that back-translation and transformer-based
ubstitution together would work best with improved translation
odels, in this work, we focus on augmentation with RoBERTa
mbedding-based synonym substitution (RESS).
Augmentation by Adapting Related Benchmarks. We in-

estigate the possibility of augmenting the training data with
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Table 2
Augmentation examples.
Original sentence Augmentation method Augmented sentence

Even without watching the movie, I
just know that it would not be as
good as the book.

WordNet Yet without watching the picture show, I just make love that it would not be as
good as the book.

Word2Vec Even without watching the moive, I just know that it could not be as good
regarded the book.

RoBERTa Even without viewing the movie, you just knew that it would not be as good as
the book.

Backtranslation (DE-EN) Even without seeing the film, all I know is that it wouldn’t be as good as the
book.

The news is fake because so much of
the news is fake.

WordNet The news be fake because so much of the word is fake.

Word2Vec The news becomes fake anyway so much of the news is bogus.
RoBERTa The data is fake because so much about the information is fake.
Backtranslation (DE-EN) The messages are fake because so many messages are fake.
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Fig. 7. Three-stage taxonomy of propaganda detection.

uman-curated datasets created for the related task of propa-
anda detection. As discussed in Section 3, this task applies vari-
us logical fallacy techniques including Ad Hominem, Red Herring,
ppeal to Emotion, and Irrelevant Authority. We adopt the Propa-

ganda Techniques Corpus (PTC) [7], which includes techniques that
can be found in journalistic articles and can be judged intrinsi-
cally, without the need to retrieve supporting information from
external resources. The taxonomy of PTC is illustrated in Fig. 7.

The PTC dataset consists of news articles, where each sentence
can have between zero, one or more fallacy annotations. As
such, we adapt the PTC dataset for augmentation as follows. If
a sentence contains more than one propaganda technique, then
that sentence is duplicated with all its respective labels. We also
combine one previous sentence, as a context, with the original
labeled sentence only if the previous sentence does not belong to
another fallacy class. As some of the fine-grained classes of PTC
differ from those of our logical fallacy framework, we use PTC
for augmentation after mapping its 18 classes to coarse-grained
classes. To do so, we map the fine-grained classes in the PTC
dataset to their closest fine-grained class correspondents in the
logical fallacy dataset using the class definitions and descriptions.
We then simply apply the broad class mapping created for the
logical fallacy dataset and map the PTC fine-grained classes to
the logical fallacy coarse classes. As the goal of this merging
is to use the PTC coarse-grained classes for augmentation, we
only leverage the training set of PTC and discard its development
and test sets. Since the imbalance of the dataset worsens after
10
Table 3
Training data augmentation statistics for PTC.
Fallacy Class Pre-augmentation Post-augmentation

Relevance 3950 3950
Defective induction 1040 2000
Presumption 536 2000
Ambiguity 42 2000

merging, we use the RESS-based augmentation to augment the
three under-represented classes in the merged training setup to
a minimum of n = 2000 samples. We cap the augmentation to
this amount so as to avoid repetitions and noise in the augmented
dataset, which become dominant in the case of augmenting until
the number of samples in the largest class (n ≈ 4, 000). We refer
the reader to Table 3 for augmentation statistics.

5. Experimental setup

5.1. Evaluation

Binary Logical Fallacy Detection. BIG Bench [101] is a bench-
arking dataset that is used for probing the representations of

arge language models to check their biases on various sub-tasks.
IG Bench includes two tasks for probing fallacies: binary logical
allacy detection and the formal fallacy syllogism negation. We
se the binary fallacy detection dataset for evaluating whether
he methods can distinguish between normal and fallacious ar-
uments. We do not use the formal fallacy syllogism negation
ataset since its format and purpose involve the deduction of the
alidity of sentences on the basis of the two provided premises,
hich is not directly related to the objective of this paper.
We split the BIG Bench logical fallacy dataset into training,

alidation, and testing sets, for which the distributions are shown
n Fig. 8(a). The dataset is balanced and contributes 2800 samples
cross all three splits.
Fine-Grained Classification. For the fine-grained classifica-

ion evaluation, we use the LOGIC and LOGIC Climate datasets
ntroduced in [16]. There are thirteen classes within the LOGIC
nd LOGIC Climate fallacy datasets as described in Table 1. The
OGIC dataset contains everyday fallacious arguments belonging
o various topics. We use the cleaned and revised version of this
ataset.3 The LOGIC Climate dataset consists of climate change
ews articles and fallacious arguments detected in them. We
se LOGIC Climate as an evaluation-only dataset. As observed in
igs. 8(d) and 8(e), the distributions between the two datasets are
ifferent, with Intentional being the largest class in the Climate

3 https://github.com/tmakesense/logical-fallacy/tree/main/dataset-fixed.

https://github.com/tmakesense/logical-fallacy/tree/main/dataset-fixed
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ataset, whereas it is one of the under-represented classes in the
OGIC fine-grained dataset. The LOGIC Climate dataset is included
o test the ability of our models to learn these under-represented
lasses as well as the transferability of the model’s knowledge to
nseen topics.
Coarse-Grained Classification. We evaluate the coarse-

rained classification based on data inferred from the LOGIC and
OGIC Climate datasets. The coarse-grained datasets are curated
y mapping fine-grained classes from these two datasets to
he coarse-grained categories following Fig. 1. In the mapping
rocess, fine-grained classes with k ≤ 20 samples were removed
rom their corresponding coarse class if this coarse class was
ot under-represented. For LOGIC, we left out the fine-grained
lasses Fallacy of Relevance, Fallacy of Logic and Intentional, as their
apping to coarse-grained classes was mostly ambiguous for the
ata examples. This resulted in a four-way coarse classification
ask for LOGIC and LOGIC Climate into: Fallacy of Relevance,
allacy of Defective Induction, Fallacy of Ambiguity, and Fallacy of
resumption.
The coarse version of the LOGIC dataset shows a clear im-

alance. A visual representation of the distribution is shown in
ig. 8(b). To ensure that the testing and validation splits are
epresentative of this distribution, we sample all our splits using
tratification. The splits for LOGIC Climate [16] are created in a
imilar manner. Their distribution is shown in Fig. 8(c).
Evaluation Regime and Metrics. We test the models on the

IG Bench and LOGIC datasets by fine-tuning and curriculum
earning. We apply the models trained on the LOGIC dataset for
ine- and coarse-grained classification in a zero-shot fashion to
he corresponding LOGIC Climate data. We report the average
odel performance over three runs. We use weighted precision,

ecall, F1-score, and accuracy to characterize the performance of
ifferent models. Weighted measures are used to assess the per-
lass scores more accurately for the available unbalanced testing
ets.

.2. Implementation details

Baselines. We experiment with six NLI/MNLI base version
models: BERT [102], DeBERTa [103], DistilBERT [104], Electra
[105] and RoBERTa [106]. We utilize NLI models because we find
that they perform better on the tasks of logical fallacy identi-
fication. This can be expected given that they are trained on a
larger variety of data than MLM or similar models. NLI models
11
have also been shown to have a better grasp of concepts than
their MLM counterparts and to produce embeddings with better
semantic representations [107]. To contextualize the results, we
also evaluate two simple baselines: a random baseline and a
baseline that picks classes based on the relative frequency of
classes in the training set.

Instance-Based Reasoning. For all the experiments, we use
a sweep over the hyperparameters such as weight decay (L2
regularization), learning rate, and feed-forward network dropout
rate. Since we use a threshold to filter the fetched similar ex-
amples from the retriever, based on cosine similarity, we use a
sweep over the used threshold as well. We then use the best
combination on the development set and report the average
performance on three runs using the best hyperparameters. We
use the NLI-initialized Electra-base LM as the underlying encoder
for generating input sentence embeddings and train our models
for ten epochs in each experiment. As we observe that the 0.5
similarity filter for fetched similar cases from the retrievers yields
the best results, we apply a similarity filter on top of the retrievers
discarding any fetched case whose cosine similarity to the new
case is below 0.5. We use multi-head attention with eight heads.
The number of cases (k) used in our experiments ranges from 1
to 10. We do not experiment with more cases due to the stable
trend seen when increasing the number of cases.

Prototype-Based Reasoning. We experiment with a different
umber of positive and negative prototypes and find that 49
ositive prototypes and 1 negative prototype works best for the
ine-grained classification task. We keep the same number of
rototypes for the binary, coarse-, and fine-grained classification
asks. To train the negative prototype, we also include a ‘‘None’’
lass, supported by the examples from the negative class in the
inary classification task. We use the NLI-initialized Electra-base
s the underlying encoder for generating input sentence embed-
ings and report the best metrics averaged over three runs. We
onitor the validation loss to choose the best model and use early
topping (patience = 10) to prevent overfitting. We also compute
class weights to handle any imbalance in the training dataset.

Knowledge Injection. For the experiments with K-BERT, we
perform a grid search and report the results for the
best-performing set of parameters. We use grid search to find the
optimal parameters: a learning rate of 2 × 10−5 with a dropout
of 0.5. We use the BERT-base model by injecting knowledge from
CSKG and fine-tune the KI model over different datasets for five
epochs.
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Table 4
The corresponding runtime (in seconds) for the experiments done with each
method and model per epoch, for the best models on the binary fallacy detection
task.
Method Model Binary Coarse Fine

NLI Electra 66.0 89.0 108.5
IBR Electra 103.7 147.6 191.2
PBR Electra 15.5 38.2 114.8
KI K-BERT 96.4 107.3 123.9

Curriculum Learning. For a fair comparison of the curriculum
learning pipeline against the baseline model, we report scores on
the default hyperparameters of the fine-tuned model, though we
expect an overall increase for all metrics of at least 2%–3% when
these models are tuned. We train for 5, 8, and 10 epochs for each
tuning stage respectively in the curriculum learning pipeline to
avoid loss of knowledge across multiple fine-tuning stages. We
fix the batch size to 32, the learning rate to 5×10−5, and we use
the cosine learning rate scheduler while keeping the remaining
hyperparameters for our experiments unchanged.

Data Augmentation. We conduct experiments with differ-
ent augmentation techniques for word-based and sentence-based
augmentation using NLPAug [108]. We experiment with a range
of augmentation probabilities and the number of suitable sub-
stitutions for RESS, discovering the best results with 5 substitu-
tions, while over 10 substitutions leads to a decrease in perfor-
mance. Similarly, we obtain the best results with the augmen-
tation threshold set between 80–90%, and a maximum of three
replacements per argument.

6. Results

We run all our experiments on a cluster of A100-PCIE-40 GB
GPUs. The runtime of our experiments depends on the family of
methods used, the dataset, and the size of the model being fine-
tuned. We report runtimes for our best models on the binary
fallacy detection task as well as coarse- and fine-grained classifi-
cation task in Table 4. The recorded times show that the runtime
of the models is mostly within the same order of magnitude of
tens of seconds for binary, around a hundred seconds for coarse-
, and between one and two hundred seconds for fine-grained
classification. The PBR model is exceptionally efficient to train —
its runtime is lower or comparable to the baseline NLI model. IBR
takes the longest to run, taking one order of magnitude longer
than PBR for binary classification and twice as long for fine-
grained classification. As the encoding stage that is part of the
retriever in the IBR framework is executed as a preprocessing step
and is presented as a look-up table in the training stage, the time
that is needed to encode all training examples with an encoder is
excluded in this table.

6.1. Overview of the results

Tables 5, 6, and 7 show the obtained results for each method:
NLI baseline, NLI with FCL, IBR, PBR, and KI on the tasks of logical
fallacy detection, coarse-grained classification, and fine-grained
classification. Here, we present the best result per method, indi-
cating the corresponding model, and dive into each method in the
subsequent sections. All presented results use augmentation data
based on modifying the original task data (RESS).

We observe that all methods besides KI can solve the logical
fallacy detection task with a nearly perfect F1-score
(98.4%–99.7%), with the IBR method using an NLI-Electra lan-
guage model reaching the best performance (cf. Table 5). The
results on the coarse- and fine-grained tasks show more in-
triguing patterns. IBR again obtains the best performance on
12
the in-domain task (LOGIC dataset) achieving 82.7% and 62.7%
F1-scores on the coarse-grained and fine-grained datasets, re-
spectively (cf. Tables 6, 7). However, the trends are more mixed
when generalizing to the out-of-domain task of LOGIC Climate.
The transfer learning F1-score of IBR (46.6%) falls behind the
PBR model (57.3%) on the coarse-grained classification of the
LOGIC Climate data (cf. Table 6), while the performance of the
NLI method with curriculum learning performs on par with IBR
(∼ 24%) for the LOGIC Climate fine-grained task outperforming
the other models (cf. Table 7). Among the different language
models, most of our methods achieve the best results when using
Electra with NLI initialization.

All in all, we observe that CBR models (IBR and PBR) perform
better than baseline, curriculum learning, and KI, while offering
inherent explainability. We observe a significant gap between
the performance of all the models on the in-domain dataset
(LOGIC) and the out-of-domain dataset (Climate LOGIC), partic-
ularly in the fine-grained dataset, which indicates the complexity
of knowledge transfer in logical fallacies from topic to topic.
Zooming in on the performance of the CBR models on the out-of-
domain setting, prototypical examples seem to be more helpful
for approaching coarse-grained classes, while simply focusing on
the semantic similarity of previous cases to approach new ones
is performing better for fine-grained logical fallacies.

These results provide insights into the overall trends between
the method families, however, many questions remain open. We
next investigate the following questions. Does augmentation help?
(Section 6.2) Does curriculum learning have a consistent impact
across models? (Section 6.3) Does commonsense knowledge and
reasoning by cases have a robust and notable effect on the model per-
formance? (Section 6.4) Do instances, prototypes, and commonsense
knowledge provide intuitive explanatory mechanisms? (Section 6.5)
Which classes are helped by our methods, and which remain difficult
to address? (Section 6.6)

6.2. Effect of augmentation

As the LOGIC dataset is highly imbalanced, we hypothesize
that data augmentation will help to address this gap, ultimately
bringing better performance on this dataset. The challenge with
standard augmentation techniques is that logically fallacious
statements have a certain structure and arrangement, which
we wish to retain even after applying the augmentation tech-
nique. We experiment with modifying the original dataset us-
ing our RESS method and including data from the neighboring
propaganda dataset, PTC.

The obtained results for our models using Forward Curriculum
Learning are shown in Table 8. We observe that augmentation
is overall helpful on the fine-grained task and harmful on the
coarse-grained task. Within the fine-grained task, the RESS aug-
mentation always outperforms the baseline which confirms our
expectation that data sparsity is an important challenge and it can
be addressed through RoBERTa-based synonym substitution. The
PTC augmentation is partially beneficial for some models, owing
to the overlap between the propaganda and the logical fallacy
data. However, the effect of augmentation with PTC is domi-
nantly negative, signaling that despite the overlap, this dataset is
prohibitively different from the logical fallacy data. On the coarse-
grained data, we see that augmentation has a negative impact on
four out of five models even for the RESS augmentation method.

We investigate this further by monitoring the augmentation
impact per class. Comparing the performance of the models
between pre-augmented data and post-augmented data in the
coarse-grained dataset, models trained on the post-augmented
data perform slightly better (up to 11%) on the Ambiguity class
that is initially under-represented. However, the effects are ad-
versary for the three other classes that initially have much more
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Table 5
Main results for the best models for each method family on binary logical fallacy detection on the BIG Bench dataset.
Method Model BIG Bench (Binary)

Acc P R F1

Random / 0.499 0.508 0.499 0.499
Frequency / 0.501 0.501 0.501 0.501
NLI Electra 0.995 0.995 0.995 0.995

NLI FCL Electra 0.995 0.995 0.995 0.995
IBR Electra 0.997 0.997 0.997 0.997
PBR Electra 0.984 0.984 0.984 0.984
KI BERT 0.776 0.779 0.775 0.777
Table 6
Main results for the best models for each method family on the coarse-grained classification.
Type Model LOGIC LOGIC Climate

Acc P R F1 Acc P R F1

Random / 0.249 0.413 0.249 0.298 0.249 0.508 0.249 0.323
Frequency / 0.415 0.413 0.415 0.413 0.446 0.508 0.446 0.468
NLI Electra 0.767 0.765 0.767 0.764 ± 0.01 0.509 0.602 0.509 0.498 ± 0.01

NLI FCL DeBERTa 0.758 0.748 0.758 0.751 ± 0.02 0.491 0.552 0.491 0.490 ± 0.02
IBR Electra 0.829 0.827 0.829 0.827 ± 0.01 0.459 0.585 0.459 0.466 ± 0.01
PBR Electra 0.708 0.711 0.708 0.695 ± 0.03 0.578 0.570 0.578 0.573 ± 0.03
KI BERT 0.787 0.781 0.782 0.781 ± 0.03 0.385 0.589 0.385 0.415 ± 0.01
Table 7
Main results for the best models for each method family on the fine-grained classification.
Type Model LOGIC LOGIC Climate

Acc P R F1 Acc P R F1

Random / 0.076 0.094 0.076 0.079 0.077 0.124 0.077 0.085
Frequency / 0.094 0.094 0.094 0.093 0.079 0.120 0.079 0.080
NLI Electra 0.602 0.614 0.602 0.599 ± 0.02 0.229 0.276 0.229 0.217 ± 0.01

NLI FCL Electra 0.613 0.624 0.613 0.610 ± 0.04 0.236 0.304 0.236 0.243 ± 0.02
IBR Electra 0.631 0.638 0.631 0.627 ± 0.01 0.254 0.281 0.254 0.245 ± 0.01
PBR Electra 0.574 0.600 0.574 0.574 ± 0.01 0.199 0.330 0.199 0.166 ± 0.01
KI BERT 0.488 0.478 0.488 0.482 ± 0.03 0.106 0.092 0.106 0.090 ± 0.02
Table 8
Data augmentation results on the LOGIC dataset: no data augmentation, augmentation with RESS, and augmentation with PTC. All the models in the table are trained
using the Forward Curriculum Learning framework — FCL.
Model Augmentation Coarse-grained Fine-grained

Acc P R F1 Acc P R F1

BERT – 0.747 0.737 0.747 0.739 ± 0.01 0.549 0.571 0.549 0.552 ± 0.01
RESS 0.727 0.717 0.727 0.721 ± 0.03 0.586 0.613 0.586 0.584 ± 0.02
PTC 0.696 0.651 0.696 0.667 ± 0.01 0.567 0.590 0.567 0.570 ± 0.02

DeBERTa – 0.765 0.778 0.765 0.766 ± 0.03 0.564 0.627 0.564 0.576 ± 0.02
RESS 0.758 0.748 0.758 0.751 ± 0.02 0.604 0.632 0.604 0.608 ± 0.01
PTC 0.710 0.675 0.710 0.683 ± 0.01 0.537 0.590 0.537 0.547 ± 0.04

DistilBERT – 0.711 0.698 0.711 0.704 ± 0.01 0.507 0.529 0.507 0.509 ± 0.01
RESS 0.713 0.703 0.713 0.706 ± 0.02 0.520 0.550 0.520 0.525 ± 0.03
PTC 0.704 0.652 0.704 0.664 ± 0.02 0.492 0.534 0.492 0.495 ± 0.04

RoBERTa – 0.752 0.746 0.752 0.742 ± 0.01 0.504 0.538 0.504 0.510 ± 0.01
RESS 0.713 0.710 0.713 0.706 ± 0.02 0.569 0.578 0.569 0.565 ± 0.02
PTC 0.699 0.647 0.699 0.666 ± 0.01 0.603 0.620 0.603 0.595 ± 0.01

Electra – 0.758 0.745 0.758 0.749 ± 0.02 0.602 0.621 0.602 0.608 ± 0.02
RESS 0.722 0.711 0.722 0.716 ± 0.03 0.613 0.624 0.613 0.610 ± 0.04
PTC 0.725 0.689 0.725 0.690 ± 0.01 0.578 0.596 0.578 0.581 ± 0.02
data points. We attribute this observation to the trade-off be-
tween enriching the data and disturbance in the natural distribu-
tion that the initial dataset possesses. Although by augmenting
the dataset we achieve higher performance on the sparse class,
the augmentation has a negative effect on the other classes.
This also explains the success of data augmentation on the fine-
13
grained classes, which mostly have a low number of training
examples. In summary, while augmentation does not increase
performance on the coarse-grained task variant, its success on
the fine-grained task and on sparsely represented classes mo-
tivates the need for further analysis and development of data
augmentation methods.
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Table 9
Curriculum learning results with different NLI and PBR models on Big Bench and the LOGIC coarse- and fine-grained datasets. All models use RESS augmentation.
Model CL type Binary (BIG Bench) Coarse-grained Fine-grained

P R F1 P R F1 P R F1

BERT – 0.848 0.845 0.845 ± 0.01 0.714 0.718 0.717 ± 0.04 0.583 0.583 0.583 ± 0.01
FCL – – – 0.717 0.727 0.721 ± 0.03 0.613 0.586 0.584 ± 0.02
RCL 0.826 0.827 0.826 ± 0.00 0.783 0.779 0.778 ± 0.02 – – –

DeBERTa – 0.988 0.988 0.988 ± 0.00 0.746 0.740 0.741 ± 0.03 0.607 0.593 0.592 ± 0.02
FCL – – – 0.748 0.758 0.751 ± 0.02 0.632 0.604 0.608 ± 0.01
RCL 0.908 0.892 0.889 ± 0.05 0.779 0.785 0.780 ± 0.02 – – –

DistilBERT – 0.848 0.847 0.847 ± 0.01 0.684 0.695 0.683 ± 0.02 0.508 0.513 0.505 ± 0.02
FCL – – – 0.703 0.713 0.706 ± 0.02 0.550 0.520 0.525 ± 0.03
RCL 0.844 0.842 0.841 ± 0.01 0.704 0.719 0.711 ± 0.03 – – –

RoBERTa – 0.983 0.983 0.983 ± 0.01 0.719 0.714 0.716 ± 0.01 0.560 0.545 0.545 ± 0.02
FCL – – – 0.710 0.713 0.706 ± 0.02 0.578 0.569 0.565 ± 0.02
RCL 0.900 0.899 0.899 ± 0.01 0.736 0.741 0.732 ± 0.01 – – –

Electra – 0.995 0.995 0.995 ± 0.00 0.765 0.767 0.764 ± 0.01 0.614 0.602 0.599 ± 0.02
FCL – – – 0.711 0.722 0.716 ± 0.03 0.624 0.613 0.610 ± 0.04
RCL 0.957 0.957 0.957 ± 0.01 0.779 0.782 0.775 ± 0.03 – – –
6.3. Effect of curriculum learning

The effect of curriculum learning for models trained on RESS-
ugmented data can be seen in Table 9. We see clear trends
or all three tasks that are consistent across the NLI models.4
e observe that curriculum learning is beneficial for the coarse-

rained and the fine-grained tasks, whereas it is detrimental for
he binary detection task.

Among the two CL variants tested on the coarse-grained task,
e see that RCL performs better than FCL. With the reverse
urriculum, we notice that using the fine-grained weights for
oarse-grained classification improves scores considerably for all
odels, with DeBERTa performing the best with a 0.78 weighted
1 score. This means that all models learn more about the coarse-
rained task from the fine-grained task compared to learning
rom the binary fallacy detection task (i.e., when we use the
IG Bench initialization weights instead of NLI). Three out of
ive models still improve their performance in the FCL setup.
owever, Electra and RoBERTa decrease their performance and
ncrease their variance between runs in this setup, which can be
ttributed to their sensitivity to hyperparameter values.
On the other two tasks, we only compare a single CL variant

o the baseline models. We do not test FCL on the binary task,
s there is no task that is easier than the binary detection in
ur pipeline to initialize the weights from. Analogously, we do
ot test RCL on the fine-grained task, because our pipeline has
o task that is more complex than the fine-grained classifica-
ion to initialize the model weights from. For the fine-grained
valuation, we see that the coarse-grained initialization performs
etter than the original NLI initialization. We note that using a
orward curriculum leads to an increase in at least 1% F1-scores
hroughout, with Electra performing the best in this category with
.61 weighted F1. As described before, we expected the benefit of
CL on the fine-grained task, as the forward curriculum allows the
odel to learn in stages of increasing difficulty, which enhances
odel performance at each granularity. We also observe that

ncreasing the number of epochs at each level of the pipeline
elps to reduce the forgetting of knowledge during downstream,
ine-grained tasks. However, we observe a negative impact when
sing RCL for binary fallacy detection, which indicates that this
ask does not benefit from the initialization of models on the
allacy classification tasks.

Overall, our results reliably show that the curriculum learn-
ng pipeline is capable of improving performance for the logical

4 We observe identical trends when using CL together with the PBR-based
lectra model.
14
reasoning task of fallacy detection and the coarse representations
are effective in the final stage of tuning even though they do not
always outperform the other initializers in the coarse stage.

6.4. Analysis of method sensitivity and ablations

Next, we perform ablations of the components of our methods
and investigate key parameter settings.

6.4.1. Instance-based reasoning
We observe that the IBR method performs the best among the

methods across all datasets (cf. Tables 5, 6, and 7). This indicates
that the idea of using similar instances to solve a new problem is
effective at various levels of granularity. Although considering the
common belief about the trade-off between predictive ability and
interpretability [109–111], IBR models could have not behaved
as well as other methods discussed, inline with [112,113], we
observe that IBR models offer good accuracy, as well as potentials
for explainability [86]. We investigate the effect of the optimal
number of similar cases, and of the designs of the retriever
and the adapter on the performance of the method. We do not
investigate different design choices for the Classifier, which is
currently a feed-forward neural network, and as such, a trivial
step in the framework.

Optimal number of similar cases. Considering the complexity
of sentences containing a logical fallacy, as well as the wide
range of subjects they cover and revolve around, it is most likely
that for some sentences, there would be more than one already-
seen sentence that would be useful or essential for the model’s
reasoning. It is worth mentioning that although similar cases can
potentially help the model classify certain sentences better, due
to the fact that retrievers are imperfect and also language models
can only capture the surface meaning of the sentences (form in
the language) and not necessarily understand the meaning [114],
adding more similar cases to the model can be considered noise
and not useful. On this ground, we check the effect of the dif-
ferent number of cases shown to the model and assess their
impact on the model’s performance in Fig. 9. As can be observed,
for the coarse-grained and fine-grained datasets, there is a soft
downward transition between using fewer examples and more
examples that shows using more similar cases does not help the
model as much as it hinders the process. This pattern differs
further between coarse-grained classes and fine-grained classes.
In the coarse-grained classification, regardless of the number of
cases, the performance of the IBR model is always superior to
the baseline, while in the fine-grained classification, having more
than five similar examples would hurt the performance and cause
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Table 10
Comparing the performance of the model using different retrievers to fetch similar cases.
Dataset Retriever P R F1

BIG Bench empathy 0.969 0.969 0.969
all-MiniLM-L6-v2 0.983 0.983 0.983
paraphrase-MiniLM-L6-v2 0.861 0.823 0.822
SimCSE 0.997 0.997 0.997

Coarse-grained empathy 0.815 0.813 0.808
all-MiniLM-L6-v2 0.807 0.801 0.796
paraphrase-MiniLM-L6-v2 0.788 0.785 0.786
SimCSE 0.827 0.829 0.827

Fine-grained empathy 0.622 0.607 0.609
all-MiniLM-L6-v2 0.616 0.616 0.611
paraphrase-MiniLM-L6-v2 0.588 0.567 0.567
SimCSE 0.638 0.631 0.627
Fig. 9. Comparing the performance of the model being exposed to different
numbers of similar cases in the IBR framework.

a drop even below the baseline. Considering the fact that fewer
similar cases means less noise and more similar cases means
better coverage in terms of the potential aid from similar cases,
we conclude that higher coverage cannot compensate for the
excess noise added to the model.

Design of Retriever. For sentences that contain logical fal-
lacies, nuances in meaning are vital to distinguish the actual
relevant similar sentences from the ones that are only revolving
around the same subject. Building upon this idea, we inves-
tigate different pre-trained language models as the retriever’s
encoder (Section 4.1.1). The comparison between these encoders
is illustrated in Table 10. We observe the superior performance
of SimCSE on all the datasets with different granularity levels.
We attribute this to the contrastive learning objective used in
SimCSE. MiniLM with six layers, an all-round model tuned for
many use cases, comes in the second rank. Both SimCSE, as well
as the all-MiniLM model trained on NLI, show the relevance and
effectiveness of NLI for logical fallacy prediction. However, the
paraphrase models, though trained on similar tasks such as AllNLI
(concatenation of SNLI [115] and MultiNLI [116]) and sentence
compression, come in the last rank.

Design of Adapter. We compare our results on three datasets
with and without using the attention mechanism in the third
stage (adaptation). The results of this ablation study are presented
in Table 11. Confirming our hypothesis, we note better perfor-
mance in the presence of an attention mechanism to adjust the
weights on similar cases when reasoning about the new case C .
his observation is consistent across all datasets, which means
hat attention is a robust adaptation mechanism that helps the
odel to attend to relevant cases regardless of the granularity of

he task.
15
Table 11
Comparing the performance of the IBR model with and without using the
attention mechanism.
Dataset Attn Acc P R F1

BIG Bench w 0.997 0.997 0.997 0.997
w/o 0.826 0.829 0.826 0.824

Coarse-grained w 0.829 0.827 0.829 0.827
w/o 0.768 0.762 0.768 0.764

Fine-grained w 0.631 0.638 0.631 0.627
w/o 0.620 0.631 0.620 0.619

6.4.2. Prototype learning
We dive deeper into the connection between prototypes and

classes, and the sensitivity of our PBR model on the number of
prototypes.

Prototypes Characterizing Classes. We find the prototypes
responsible for the classification of each training example and
assign them to the respective labels. We observe that the masking
mechanism, which we introduce to the PBR method, helps to as-
sociate certain prototypes to particular classes. While we expect
to see a distinct set of prototypes representative of each class, we
observe a mix of distinct and common prototypes representing
a particular label. For example, for the class Fallacy of Logic, we
get prototypes 6, 13, 38, and 7 as the strongest representatives.
However, we observe prototype 38 to be a strong representative
for five other class labels as well. We believe this is because of the
nature of the overlap of fallacy classes, e.g., a fallacious sentence
might have flavors of both Appeal to Emotion and Ad Populum,
even if only one of them is annotated as the correct class. Further,
we cluster the 50 prototype tensors used for the benchmarking of
the fine-grained classification task and color code the prototypes
based on their indices, as shown in Fig. 10. Here, prototypes 1–10
have a light color and as we go towards prototypes 40–50, the
shades get darker. We observe a certain grouping of prototype
tensors, which may indicate unique features captured by the
prototypes per class.

Prototypes Characterizing Classes. Fig. 11 shows the trend
of F1-score on the fine-grained classification task for a different
number of prototypes. We assign 10% of the prototypes to the
negative class for this specific benchmarking. We observe a high
sensitivity of the Prototex model to the number of prototypes,
where having a too low or too high number of prototypes yields
suboptimal results. We find that having a total of 50 (5 negatives)
or 100 (10 negatives) prototypes yields the best performance. The
PBR method is highly sensitive to the number of prototypes, and,
thus, it is important to tune this hyperparameter for new datasets.
Moreover, we investigate whether introducing negative proto-
types is beneficial to the PBR model. Similar to [89], we find that
including negative prototypes together with a ‘‘None’’ prediction
class brings better performance on the logical fallacy coarse- and
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Fig. 10. T-SNE clustering (perplexity = 2) of the 50 prototype tensors used
for fine-grained classification. We flatten the prototypes thereby reducing the
98,304-dimensional data to just 2 dimensions.

Fig. 11. Comparison of the performance of the PBR model for different numbers
of prototypes on the LOGIC fine-grained classification task.

Table 12
Comparing the performance of the KI method with and without using similarity
ranking of relations.
Dataset Similarity ranking Acc P R F1

BIG Bench w 0.776 0.779 0.775 0.777
w/o 0.750 0.770 0.740 0.739

Coarse-grained w 0.787 0.781 0.782 0.781
w/o 0.760 0.706 0.746 0.721

Fine-grained w 0.488 0.478 0.488 0.482
w/o 0.468 0.489 0.407 0.419

fine-grained classification tasks, though the performance gain in
our case is more limited (2%–3% increase in absolute F1-scores).

6.4.3. Knowledge injection
We assess the performance of K-BERT, [56] on identifying

ogical fallacies in terms of the decisions made when injecting
nowledge from the external KG (namely, CSKG). The information
ained from CSKG is used for forming sentence trees that are used
s the primary points for knowledge injection. In the process of
nowledge injection with CSKG, the tokens of the sentences are
roken down and the triples containing the token are appended
o the token to form a sentence tree. By default, the KI method
reates a sentence tree by using a maximum of two such branches
er token. The exploration depth of the relation is limited to a sin-
le hop. With regards to picking useful relations, the KI method
ses a brute force method for choosing triples for tokens that
ave multiple relations present within the knowledge base. We
16
Fig. 12. F1-scores for different branching factors for KI.

investigate the effect of different knowledge selection strategies,
numbers of branches, and hops.

Effect of Similarity Ranking of Relations. While information
is appended to the sentence tree, we hypothesize that it is more
meaningful to have a selection strategy in effect to select relations
that add relevant knowledge to the sentence, and this serves as
a point for an ablation study. This similarity ranking strategy
enhances the performance of the KI method consistently over
three different tasks for the different datasets, as observed in
Table 12. The performance gain is around six F1-score points for
each of the three datasets, confirming our hypothesis that select-
ing knowledge based on relevance is important, as also shown
in [60]. This result also motivates the need for more advanced
methods for context-dependent knowledge selection.

Branching Factor Size. In the knowledge layer of K-BERT, the
efault branching factor is 2. Here, we analyze the performance of
he model for different branching factors chosen (with similarity
anking of relations). As observed from Fig. 12, a branching factor
f 5, gives better performance over the other branching factors.
e take this branching factor to represent a sweet spot between
roviding K-BERT with too little additional knowledge (b < 5)

and too much additional knowledge (b > 5).
Number of hops. The base KI model uses only 1 hop of

nowledge. A single hop corresponds to discovering the first
elation and entity connected with the token, while by using
ultiple hops, we discover subsequent depths of relations based
n the entities associated with them. Our analysis shows that,
n the multi-hop setup, the performance of K-BERT decreases by
%–4%. The drop in performance can be explained by the noise
ntroduced by including multiple hops without careful filtering of
he expansion. This finding is consistent with the finding of the
est branching factor size that the KI model works better when
resented with a smaller set of relevant relations. We look closer
t the quality of the retrieved knowledge in the next section.

.5. Qualitative analysis

We analyze four cases for which the base model predicts
n incorrect class, and our IBR and PBR methods change the
rediction to the correct class. The KI method predicts the last
wo examples correctly as well.

Quality of the Retrieved Cases. For these four exemplars,
able 13 shows the retrieved instances by IBR and prototypical
xamples by PBR. For PBR, we show the two nearest training
xamples to the nearest prototype for a given input. We note
hat 6 out of 8 examples for IBR and all 8 examples for PBR



Z. Sourati, V.P.P. Venkatesh, D. Deshpande et al. Knowledge-Based Systems 266 (2023) 110418

c
A
p
1
i
f
e
t
p
t
G

Table 13
Input arguments with their fetched similar cases. We mark the exemplars from the same class as the input in bold.
Class Input sentence Similar cases (IBR) Prototypical cases (PBR)

Ad Populum Everyone is going to get the new
smart phone when it comes out this
weekend. Why aren’t you?

(1) I’m gonna get an iPhone
because everybody else has an
iPhone and they’re cool.

(1) Everyone seems to support the changes in
the vacation policy, and if everyone likes them,
they must be good.

(2) Everyone wants the iPhone 11
because it’s the best phone on the
market!

(2) Everyone is buying the new iPhone that’s
coming out this weekend. You have to buy it
too.

Fallacy of Logic surgeons have X-rays to guide them
during an operation, lawyers have
briefs to guide them during a trial,
carpenters have blueprints to guide
them when they are building a
house. Why, then, shouldn’t students
be allowed to look at their textbooks
during an examination?

(1) Doctors refer to medical books
all the time when they are treating
patients. In the same way, I should
be allowed to use a textbook in my
medical exam.

(1) All Paul Newman movies are great. All great
movies are Oscar winners. Therefore, all Oscar
winners are Paul Newman movies.

(2) If I say that a surgeon should be
allowed to use a guidebook to
carry out surgery like a student can
use open notes on a test, I have
made a ...

(2) The lady in the pink dress is Julia Roberts.
The reporter thinks Julia Roberts drives a Prius.
Therefore, the reporter thinks the lady in the
pink dress drives a Prius.

Faulty Generalization Everyone knows that teenagers are
lazy

(1) If we let teenagers wear
whatever they want to school, they
will no longer respect the rules and
academic performance will decline.

(1) If we allow a housing development to be
built on Sunny Lake, a resort will come next,
and soon we won’t have any wilderness left!

(2) If we don’t teach teens to work
harder, the human race is doomed

(2) Michael is part of the Jackson Five. Without
Tito and company, he will never make it.

Faulty Generalization If you forget to floss, you will get
cavities, and if you get cavities, you
will lose all your teeth by the time
you’re 30

(1) If you don’t eat breakfast, you’ll
slouch in your desk. If you slouch
in your desk, you’ll hurt your back.
If you hurt your back, you’ll never
become President.

(1) If we allow gay people to get married, then
the next thing you know people will be
wanting to marry their pets!

(2) four out of five dentists agree
that brushing your teeth makes your
life meaningful

(2) You smoke pot? If you keep doing that,
you’ll be a heroin addict within two years.
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come from the same class, which indicates that the modified
decision in these cases correlates with obtaining helpful (or even
representative) examples from the same class. We note, however,
this is not always the case — the retrieved examples for IBR
and PBR can also be from different classes. We observe that the
corrected prediction of IBR and PBR is based on two scenarios.
The first situation, shown with the first three examples for IBR in
Table 13, is when the retrieved examples reflect surface similar-
ity, which curiously still helps the model to change its decision.
The second situation, observed for the last example of IBR and
most PBR examples, is when the model captures the structural
similarity and more abstract semantics. As we hypothesize that
informal fallacies require a mixture of both aspects, observing
that IBR and PBR capture them to different extents is encouraging
for future work. At the same time, we also observe cases where
the model correctly changes its prediction even though some of
the retrieved cases belong to different classes and it is not clear
how they help the model prediction. This shows the impact of
the other components of our methods (the Adapter and Classifier
components for IBR, or the rest of the neural architecture in PBR),
but also motivates the need for future work on better models for
retrieving semantically and pragmatically similar cases.

Quality of the Retrieved Knowledge. Table 14 shows the
ommonsense triples retrieved by KI as background knowledge.
s mentioned above, the KI method predicts the first two exam-
les incorrectly, and the last two examples correctly. In example
, we see that while the retrieved triples focus on the word phone,
t is the word everyone in the sentence that is the main clue to the
act that the sentence belongs to the class Ad Populum. The second
xample shows a case where the background knowledge misleads
he model about the subject of the sentence, thus hindering it to
erform a correct classification. In the third and fourth examples,
he model is able to correctly classify the example as Faulty
eneralization, and we believe that this correlates with the quality
17
f the retrieved knowledge. For instance, in the last example,
ERT receives relevant knowledge such as flossing being used
or good oral hygiene and floss related to teeth, which may have
elped the model to overturn the wrong prediction into a correct
ne.

.6. Per-class analysis

Table 15 shows the per-class performance of our models on
he fine-grained LOGIC task. Across the different classes, IBR per-
orms best for eight out of thirteen classes and CL comes second,
hich is consistent with the overall results (cf. Table 7). While
e do not observe a clear pattern in terms of the superiority of
ethods in terms of coarse-grained classes, we do observe that

he classes with more data points (top rows in Table 15) are
andled better by the CL model, showing that the CL model is
ble to reach its best performance when more data is available.
his is somewhat counterintuitive, as we expect that CL can help
he classes with more sparse data. However, we do observe that
ualitatively CL has the best performance on the Ad classes: False
ausality, Ad Populum, and Ad Hominem, indicating that the CL
odels are able to benefit from transferring knowledge within

he same class from the coarse- to the fine-grained task. The
act that the two least populated classes are handled best by
he methods KI and PBR indicates a potential for data-efficient
easoning with these methods.

Curiously, we do not see a significant improvement using any
f the models on the Equivocation class. We attribute the con-
istent poor performance in this class to two important factors:
1) lack of training data: although we perform augmentation, this
ugmentation only modifies the original data slightly and does
ot add substantial variety to help our models understand this
lass better. (2) as Equivocation is the only fine-grained class that
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Table 14
Examples of extracted triples with our KI method.
Class Input sentence Sample triples

Ad Populum Everyone is going to get the new smart phone when it comes out
this weekend. Why aren’t you?

(phone, able to, communicate), (phone, intent to, give or
get information), (weekend, related to, relax)

Fallacy of Logic surgeons have X-rays to guide them during an operation, lawyers
have briefs to guide them during a trial, carpenters have
blueprints to guide them when they are building a house. Why,
then, shouldn’t students be allowed to look at their textbooks
during an examination?

(surgeons, related to, operation), (operations, related to,
surgery), (student, related to, education), (lawyers,
related to, law), (students, able to, give exams)

Faulty Generalization aEveryone knows that teenagers are lazy (teenager, capable of, looking), (teenager, capable of,
performing), (teenager, is a, juvenile person), (teenager,
located near, street)

Faulty Generalization aIf you forget to floss, you will get cavities, and if you get
cavities, you will lose all your teeth by the time you’re 30

(floss, used for, good oral hygiene), (floss, related to,
teeth), (floss, related to, dental floss), (floss, related to,
mouth)

aIndicate the examples that have been classified correctly by KI.
Table 15
F1 Scores per class for LOGIC test dataset using the models trained on the augmented train split with each class having 281 data points (The number of the data
points shown for the training split in the table is before augmentation).
fine-grained class coarse-grained class F1-Scores # test # train

Baseline NLI CL IBR ProtoTex KI

Faulty Generalization Defective Induction 0.656 0.614 0.660 0.612 0.549 60 281
Ad Hominem Relevance 0.596 0.633 0.627 0.624 0.607 39 185
Ad Populum Relevance 0.812 0.844 0.814 0.751 0.656 31 144
False Causality Defective Induction 0.596 0.727 0.708 0.698 0.526 28 132
Circular Reasoning Presumption 0.524 0.708 0.719 0.686 0.450 23 110
Appeal to Emotion Relevance 0.426 0.473 0.624 0.445 0.300 23 109
Fallacy of Relevance Relevance 0.512 0.436 0.526 0.374 0.286 22 102
Fallacy of Logic Defective Induction 0.322 0.619 0.622 0.453 0.138 22 101
Intentional Relevance 0.482 0.356 0.500 0.419 0.345 20 92
Fallacy of Credibility Defective Induction 0.400 0.390 0.486 0.473 0.231 19 89
False Dilemma Defective Induction 0.800 0.765 0.824 0.791 0.636 19 87
Fallacy of Extension Relevance 0.482 0.629 0.541 0.598 0.649 18 80
Equivocation Ambiguity 0.000 0.000 0.000 0.065 0.000 7 32
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belongs to the broader class of Ambiguity, our models do not have
nough data points to distinguish ambiguous arguments from
rguments belonging to the other classes.

. Discussion

Our evaluation shows that the methods perform relatively
ell across tasks and even on out-of-domain arguments, while

urther analysis shows that curriculum learning and data aug-
entation are promising components of a robust methodology

or identifying logical fallacies in natural language (Sections 6.3
6.2). While our methods rely heavily on language models, the

dditional components such as retrieval, attention-based mecha-
isms, and prototype networks, provide a consistent advantage of
he models over their corresponding baselines (Section 6.4). Look-
ng closer at the retrieved exemplars in the IBR and PBR methods,
e observe that they are often from the same class even when
hey are not syntactically similar to the input case (Section 6.5),
hich contributes to both the accuracy and the explainability of
ur models. Commonsense knowledge is also useful in particular
ases, and potentially misleading in others, signifying the need
or better grounding and path retrieval or generation. Looking
t the performance per fallacy class, we observe that curriculum
earning is able to benefit from knowledge transfer between Ad
lasses, while KI and PBR perform best in the most sparse classes.
This paper pursues robust and explainable methods for rea-

oning about fallacies in arguments, a task that is not only under-
tudied but also vital to support critical thinking in an educational
etting [117,118]. Our study points to research paths that should
e addressed in future work.
18
Further Innovation on Robust and Explainable Methods.
e observe that our models are often unable to perform ab-

traction and comprehend the classes in a more general sense.
his has been apparent from the mixed prototype of PBR (see
ection 6.4.2), the mixed relevance of the examples of IBR (see Ta-
le 13), and the occasionally confusing triples retrieved by KI (see
able 14). We note, however, that detecting and classifying logical
allacies is a challenging task both for modern-day AI as well as
or humans, as it requires a complex (and possibly ambiguous)
ombination of a wide range of knowledge, including an un-
erstanding of rhetorical structures and inclusion of background
nowledge about affordances and symbolism of concepts [119].
e see two parallel streams of AI methods that should be ex-
lored in depth for logical fallacies. On the one hand, a promising
ew stream relies on neural language models through methods
ike chain-of-thought reasoning [120], self-rationalization [121],
nd prompt decomposition [122], coupled with large language
odels like GPT-3 [123] and Codex [124]. On the other hand,
euro-symbolic methods that, e.g., pose reasoning as a soft logic
roblem [125] may provide an alternative approach to generaliz-
ble reasoning. We invite future work to explore these directions,
s well as their intersection, for the challenge of logical fallacy
dentification.

Focused Evaluation in Realistic and Open-Ended Settings.
he task of logical fallacy identification, and even its related task
f propaganda detection, has been introduced relatively recently
n the field of AI. As such, not only the methods but also the eval-
ation settings for these tasks are limited at present. In this study,
e take a broad perspective, starting from theories of logical

allacies from social science disciplines, and we provide a unified
ramework that can support a more comprehensive evaluation of
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allacies. We plan to extend the evaluation datasets in this paper
y further annotation of data for the remaining categories like
egging the Question and Amphiboly in Fig. 1. Moreover, beyond
dentifying fallacies in the context of propaganda and misinfor-
ation, we also propose that logical fallacy identification should
e considered in a broader set of use cases, such as forecast-
ng [126], where detecting wrong or misleading arguments may
e central to the judgment of the trustworthiness of predictions.
t is also important to consider the relation of (formal) logical
allacies to boolean satisfiability (SAT) problems [127], which
ave been proven to be NP-complete.
Application and Misuse of This Work. Logical fallacies hold

he promise to prevent the spread of propaganda, misinformation,
nd wrong argumentation among the very expansive content
irculating daily on social media platforms. This could benefit
oth industry and governments, and ultimately ordinary social
edia users. However, strong logical fallacy identification models
ay also be misused to increase or enhance the diffusion of ma-
ipulative discourse [128,128,129]. We believe that analogously
o the idea that encryption algorithms can be made robust if
ublished and tested by the community [130], our social media
ystems and communication channels will become more resilient
ith the progress in developing methods and evaluation tasks for

ogical fallacy identification.

. Conclusions

This paper presented an effort to consolidate social science
ork on logical fallacy organization into a formal framework that
an be used to develop and evaluate AI methods. The framework
onsisted of three stages: fallacy detection, coarse-grained classi-
ication, and fine-grained classification. We designed a framework
ith three methods with native explainability and robustness:

nstance-based reasoning, prototype learning, and commonsense
nowledge injection. To deal with the inherent data sparsity,
e paired our methods with approaches for data augmentation
nd curriculum learning. Extensive experiments on in- and out-
f-domain data showed that our methods have the ability to
erform robustly across tasks, and retain much of their accu-
acy on out-of-domain evaluation. Curriculum learning was most
elpful for coarse- and fine-grained evaluation, whereas data
ugmentation brought clear benefits for the most difficult task
f fine-grained classification. We found that the explanation by
he models in terms of known training instances or structured
nowledge is easy to interpret, however, we noticed that the
odels still largely rely on surface form patterns and similarity

n their reasoning. Guided by these insights, we proposed that
uture research should focus on further innovation in building ro-
ust and explainable methods, extending the evaluation to more
ealistic and open-ended settings, and facilitating open-source
pplications for social good while minimizing the possibility for
isuse of the developed solutions.
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